Peter Petrik Structural investigation techniques in materials science Ellipsometry

- Polarized light
- Hardver
- Modeling and evaluations
- Applications

Which photo was taken using a polarizing filter?

What is ellipsometry

MFA Ellipszometria Laboratórium

MFA Ellipsometry Laboratory

Nyitólap Kutatás Publikációk Projektek Műszerpark Munkatársak Elmélet Kapcsolat

Woollam M2000DI

Forgókompenzátoros spektroszkópiai ellipszométer a 190-1700 nm hullámhossztartományban automatikus goniométerrel és mintamozgató asztallal. Fókuszálás minimálisan 0.15 mm-es folton. A mérési idő pontonként néhány másodperc.

SOPRA ES4G

Dupla-monokromátoros forgó-polarizátoros spektroszkópiai ellipszométer a 250-850 nm hullámhossztartományban. A foltméret kb. 1 mm. Különösen alkalmas nagy hullámhosszfelbontású precíziós mérésekre, ahol a sebesség nem annyira fontos követelmény.

Divergens nyalábú térképező ellipszométer

Saját fejlesztésű térképező ellipszométer, amely számos hardverváltozatban elkészült, többek között cluster-kamrára szerelve.

Utolsó frissítés: 2009.02.08. (Petrik Péter)

Papers with "ellipsometry" in the title or in the abstract

Propagation of electromagetic waves

J. A. Woollam Co., Inc.

$$n_{0}\sin(\Phi_{i}) = n_{1}\sin(\Phi_{i})$$

$$r_{s} = \left(\frac{E_{0r}}{E_{0i}}\right)_{s} = \frac{n_{i}\cos(\Phi_{i}) - n_{i}\cos(\Phi_{i})}{n_{i}\cos(\Phi_{i}) + n_{i}\cos(\Phi_{i})}$$

$$r_{p} = \left(\frac{E_{0r}}{E_{0i}}\right)_{p} = \frac{n_{i}\cos(\Phi_{i}) - n_{i}\cos(\Phi_{i})}{n_{i}\cos(\Phi_{i}) + n_{i}\cos(\Phi_{i})}$$

$$t_{s} = \left(\frac{E_{0r}}{E_{0i}}\right)_{s} = \frac{2n_{i}\cos(\Phi_{i})}{n_{i}\cos(\Phi_{i}) + n_{i}\cos(\Phi_{i})}$$

$$t_{p} = \left(\frac{E_{0r}}{E_{0i}}\right)_{p} = \frac{2n_{i}\cos(\Phi_{i})}{n_{i}\cos(\Phi_{i}) + n_{i}\cos(\Phi_{i})}$$

Light reflects and refracts according to Snell's law.

p: komplex reflexiós együttható

Ψ,Δ: ellipszometriai szögek

r_p: reflexiós együttható a beesési sikkal párhuzamos polarizációra

r_s: reflexiós együttható a beesési síkra merőleges polarizációra

"Beépített" referencianyaláb: nem érzékeny a rezgésekre, a háttérre

Parameters measured by ellipsometry directly

$$\overline{\rho} = \frac{\overline{\chi}_r}{\overline{\chi}_i} = \frac{|\overline{\chi}_r|}{|\overline{\chi}_i|} e^{i(\delta_r - \delta_i)} = \tan \Psi e^{i\Delta}$$

$$\frac{\overline{\chi}_r}{\overline{\chi}_i} = \frac{\frac{\overline{E}_{r,p}}{\overline{E}_{r,s}}}{\frac{\overline{E}_{i,p}}{\overline{E}_{i,s}}} = \frac{\frac{\overline{E}_{r,p}}{\overline{E}_{i,p}}}{\frac{\overline{E}_{r,s}}{\overline{E}_{i,s}}} = \frac{\overline{r}_p}{\overline{r}_s}$$

(c) Elliptical polarization

Forgó analizátoros ellipszométer működési elve

(a) Rotating-analyzer ellipsometry (PSA_R)

$$\begin{bmatrix} E_{A} \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \cos A & \sin A \\ -\sin A & \cos A \end{bmatrix} \begin{bmatrix} \sin \psi \exp(i\Delta) & 0 \\ 0 & \cos \psi \end{bmatrix}$$
$$\times \begin{bmatrix} \cos P & -\sin P \\ \sin P & \cos P \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$P = 45^{\circ}$$
$$\blacksquare$$
$$\begin{bmatrix} E_{A} \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \cos A & \sin A \\ -\sin A & \cos A \end{bmatrix} \begin{bmatrix} \sin \psi \exp(i\Delta) \\ \cos \psi \end{bmatrix}$$
$$E_{A} = \cos A \sin \psi \exp(i\Delta) + \sin A \cos \psi$$
$$I = |E_{A}|^{2}$$
$$= I_{0} (1 - \cos 2\psi \cos 2A + \sin 2\psi \cos \Delta \sin 2A)$$
$$= I_{0} (1 + \alpha \cos 2A + \beta \sin 2A)$$

$$\alpha = \frac{\cos 2P - \cos 2\psi}{1 - \cos 2P \cos 2\psi} \quad \beta = \frac{\sin 2\psi \cos \Delta \sin 2P}{1 - \cos 2P \cos 2\psi}$$

$$\tan \psi = \sqrt{\frac{1+\alpha}{1-\alpha}} |\tan P| \quad \cos \Delta = \frac{\beta}{\sqrt{1-\alpha^2}}$$
No sign obtained

Only the shape counts Independent of intensity

J. A. Woollam Co., Inc.

Different Size (Intensity)

Same Shape! (Polarization)

What can be measured

$$\rho = \tan(\psi)e^{i\Delta} = \frac{\widetilde{R}_p}{\widetilde{R}_s}$$

What Ellipsometry Measures:

Psi (Ψ)

Delta (A)

/ Desired information must be extracted Through a model-based analysis using equations to describe interaction of light and materials What we are Interested in:

Film Thickness Refractive Index Surface Roughness Interfacial Regions Composition Crystallinity Anisotropy Uniformity

J. A. Woollam Co., Inc.

Absorption

Wave travels from air into absorbing Film 1 and then transparent Film 2. The phase velocity and wavelength change in each material depending on index of refraction (Film 1: n=4, Film 2: n=2).

Fresnel coefficients

ELLIPSOMETRY

Petrik Péter MFA Laboratory of Ellipsometry (ellipsometry.hu, petrik.ellipsometry.hu) Institute for Technical Physics and Materials Science

- Polarized light
- Hardver
- Modeling and evaluations
- Applications

Null ellipsometry

(a) Rotating-analyzer ellipsometry (PSA_R)

(b) Rotating-analyzer ellipsometry with compensator (PSCA_R)

(c) Rotating-compensator ellipsometry (PSC_RA)

(d) Phase-modulation ellipsometry (PSMA)

Types of ellipsometry

Optical solutions for your research

MFA Ellipszometria Laboratórium

MFA Ellipsometry Laboratory

Nyitólap Kutatás Publikációk Projektek Műszerpark Munkatársak Elmélet Kapcsolat

Woollam M2000DI

Forgókompenzátoros spektroszkópiai ellipszométer a 190-1700 nm hullámhossztartományban automatikus goniométerrel és mintamozgató asztallal. Fókuszálás minimálisan 0.15 mm-es folton. A mérési idő pontonként néhány másodperc.

SOPRA ES4G

Dupla-monokromátoros forgó-polarizátoros spektroszkópiai ellipszométer a 250-850 nm hullámhossztartományban. A foltméret kb. 1 mm. Különösen alkalmas nagy hullámhosszfelbontású precíziós mérésekre, ahol a sebesség nem annyira fontos követelmény.

Divergens nyalábú térképező ellipszométer

Saját fejlesztésű térképező ellipszométer, amely számos hardverváltozatban elkészült, többek között cluster-kamrára szerelve.

Utolsó frissítés: 2009.02.08. (Petrik Péter)

Measurement of sample in a Liquid Cell or gase cell

imised for absorbant liquid Or UV measurement

High resolution Mode: Spectrometer based

Fast Measurement Mode: Spectrograph based

Parallel beam – without Microspots

Back side reflection

Analyzer [de-
ELLIPSOMETRY

Petrik Péter MFA Laboratory of Ellipsometry (ellipsometry.hu, petrik.ellipsometry.hu) Institute for Technical Physics and Materials Science

- Polarized light
- Hardver
- Modeling and evaluations
- Applications

Measurement and evaluation

Interference

Evaluation

TYPICAL ACCURACY

Straight-through measurement of empty beam: (Met by 95% of the measured wavelengths with ten second averaging time.)

 $\Psi = 45^{\circ} \pm 0.075^{\circ}$ $\tan(\Psi) = 1 \pm 0.0013$ $\Delta = 0^{\circ} \pm 0.05$ $\cos(\Delta) = 1 \pm 0.0000015$

*When looking at ellipsometric specifications, it is easy to erroneously compare Δ to cos (Δ) and Ψ to tan(Ψ). We provide both numbers for your convenience. The Woollam Company IR-VASE is orders of magnitude better than the competition when measuring Δ near 0° and 180°. This is a benefit of our patented rotating compensator technology. As witnessed in the representative data shown below, the accuracy for most wavelengths is much better than specified.

Variable Angle Spectroscopic Ellipsometric (VASE) Data

Variable Angle Spectroscopic Ellipsometric (VASE) Data

ELLIPSOMETRY

Petrik Péter MFA Laboratory of Ellipsometry (ellipsometry.hu, petrik.ellipsometry.hu) Institute for Technical Physics and Materials Science

- Polarized light
- Hardver
- Modeling and evaluations
- Applications

Why ellipsometry?

Measuring by particles

(+scanning probe, electrical, etc.)

		Detected							
Incident	Foton	e⁻, e⁺	n ⁰ , p ⁺ , Ion						
Foton	Ellipsometry	XPS							
	Reflectometry								
	Raman								
	GI-XRD								
	XRD								
	SHG								
e-, e+	Positron annihilation	AES							
	EDS	TEM, SEM							
nº, p+, Ion	GD-OES		SIMS						
	PIXE		RBS						
			ND						
			GD-MS						

Measuring by particles

(+scanning probe, electrical, etc.)

Detected

Incident	Foton	e⁻, e⁺	n ⁰ , p ⁺ , Ion		
Foton	Ellipsometry		Green Blue UV		
	Reflectometry	7.5m	25'		
	Raman				
	GI-XRD	15.0m	50.		
	XRD	22.5m	75'		
	SHG	30.0m	100'		
e⁻, e⁺	Positron annihilation	AES 37.5m	125'		
	EDS	TEM, SEM			
nº, p+, lon	GD-OES		SIMS		
	PIXE		RBS		
			ND		
			GD-MS		

Methods for thin film characterization and depth profiling

Technique	Analysis Mode	Lateral Resolution (nm)	Depth Resolution (nm)	Duration (min)	Availability	Detection Limits (at.%)	Quantification of Results
SIMS	DP	5×10^{3}	4	45	Good	$10^{-7} - 10^{-3}$	Standard
SNMS	DP	10^{6}	1	120	Medium	0.05	Standard
GD-OES	DP	10^{6}	3-100	5	Good	$10^{-5} - 10^{-3}$	Standard
GD-MS	DP	10^{7}	10	10	Medium	$10^{-7} - 10^{-5}$	Standard
AES	DP	10^{5}	10	45	Good	0.3	Standard
XPS	DP	10^{5}	1-10	120	Good	0.1	Standard-free
Raman depth-profiling	DP	10^{5}	100	50	Medium	1	Standard
RBS	Surf	10^{7}	10	10	Rare	1	Standard-free
ERDA	Surf	10^{7}	10	30	Rare	10^{-4}	Standard-free
GIXRD	Surf	10^{6}	100	420	Good	1	Difficult
AXES	Surf	10^{5}	10-80	420	Rare	1	Standard
Ellipsometry	Surf	10 ³	1	10 ⁻²	Good	0.2-2	Difficult
TEM-EDX	CS	5	Specimen thickness	30	Good-medium	0.5	Standard
SEM-EDX	CS	150	Few 100	20	Good	0.5	Standard
SEM-WDX	CS	150	Few 100	60	Good	3	Standard
Scanning Auger	CS	10	1	137	Good	3	Standard
TOF-SIMS	CS	100	1	2	Medium	10^{-6}	Standard
Raman mapping	CS	400	100	120	Medium	1	Standard

Abou-Ras D, Caballero R, Fischer C H, Kaufmann C A, Lauermann I, Mainz R, Mönig H, Schöpke A, Stephan C, Streeck C, Schorr S, Eicke A, Döbeli M, Gade B, Hinrichs J, Nunney T, Dijkstra H, Hoffmann V, Klemm D, Efimova V, Bergmaier A, Dollinger G, Wirth T, Unger W, Rockett A A, Perez-Rodriguez A, Alvarez-Garcia J, Izquierdo-Roca V, Schmid T, Choi P P, Müller M, Bertram F, Christen J, Khatri H, Collins R W, Marsillac S and Kötschau I, 2011 Microsc. Microanal. 17 (2011) 728.

Methods for thin film characterization

Technique	Analysis Mode	Lateral Resolution (nm)	Depth Resolution (nm)	Duration (min)	Availability	Detection Limits (at.%)	Quantification of Results
SIMS	DP	5×10^{3}	4	45	Good	$10^{-7} - 10^{-3}$	Standard
SNMS	DP	10^{6}	1	120	Medium	0.05	Standard
GD-OES	DP	10^{6}	3-100	5	Good	$10^{-5} - 10^{-3}$	Standard
GD-MS	DP	10^{7}	10	10	Medium	$10^{-7} - 10^{-5}$	Standard
AES	DP	10^{5}	10	45	Good	0.3	Standard
XPS	DP	10^{5}	1-10	120	Good	0.1	Standard-free
Raman depth-profiling	DP	10^{5}	100	-	<u>l í l</u> um	1	Standard
RBS	Surf	107	10		/	1	Standard-free
ERDA	Surf	10^{7}	10	Quici		10^{-4}	Standard-free
GIXRD	Surf	10^{6}	100		Good	1	Difficult
AXES	Surf	10^{5}	10-80	420	Rare	1	Standard
Ellipsometry	Surf	10 ³	1	10 ⁻²	Good	0.2-2	Difficult
TEM-EDX	CS	5	Specimen thickness	30	Good-medium	0.5	Standard
SEM-EDX	CS	150	Few 100	20	Good	0.5	Standard
SEM-WDX	CS	150	Few 100	60	Good	3	Standard
Scanning Auger	CS	10	1	137	Good	3	Standard
TOF-SIMS	CS	100	1	2	Medium	10^{-6}	Standard
Raman mapping	CS	400	100	120	Medium	1	Standard

Abou-Ras D, Caballero R, Fischer C H, Kaufmann C A, Lauermann I, Mainz R, Mönig H, Schöpke A, Stephan C, Streeck C, Schorr S, Eicke A, Döbeli M, Gade B, Hinrichs J, Nunney T, Dijkstra H, Hoffmann V, Klemm D, Efimova V, Bergmaier A, Dollinger G, Wirth T, Unger W, Rockett A A, Perez-Rodriguez A, Alvarez-Garcia J, Izquierdo-Roca V, Schmid T, Choi P P, Müller M, Bertram F, Christen J, Khatri H, Collins R W, Marsillac S and Kötschau I, 2011 Microsc. Microanal. 17 (2011) 728. Point-by-point mapping of large surfaces

MEASUREMENT TIME

Area: 30 cm x 30 cm Resolution: 1 cm

6 s / point

1.5 h

Department of Physics & Astronomy and Center for Photovoltaics Innovation and Commercialization, The University of Toledo

L. R. Dahal , Z. Huang , C. Salupo , N. J. Podraza , S. Marsillac , R. W. Collins, "MAPPING AMORPHOUS SILICON p-TYPE LAYERS IN ROLL-TO-ROLL DEPOSITION: TOWARD SPATIALLY RESOLVED PECVD PHASE DIAGRAMS, IEEE Photovoltaics Specialists Conference 6185876 (2011) 182.

Divergent source mapping of large surfaces

G. Juhasz, Z. Horvath, C. Major, P. Petrik, O. Polgar, M. Fried, "Non-collimated beam ellipsometry," physica status solidi c 5 (2008) 1081-1084.

M. Fried, G. Juhász, C. Major, P. Petrik, O. Polgár, Z. Horváth, A. Nutsch, "Expanded beam (macro-imaging) ellipsometry", Thin Solid Films 519 (2011) 2730.

Psi-map of (nominally 110 nm) SiO₂ /Si wafer

Map by moving the sample

Spectroscopic mapping

5/10 mm periodic SiO₂ pattern

3 prototypes of expanded beam mapping spectroscopic ellipsometer

Methods for thin film characterization

Technique	Analysis Mode	Lateral Resolution (nm)	Depth Resolution (nm)	Duration (min)	Availability	Detection Limits (at.%)	Quantification of Results
SIMS	DP	5×10^3	4	45	Good	$10^{-7} - 10^{-3}$	Standard
SNMS	DP	10^{6}	1	120	Medium	0.05	Standard
GD-OES	DP	10^{6}	3-100	5	Good	$10^{-5} - 10^{-3}$	Standard
GD-MS	DP	10^{7}	10	10	Medium	$10^{-7} - 10^{-5}$	Standard
AES	DP	10^{5}	10	45	Good	0.3	Standard
XPS	DP	10^{5}	1-10	120	Good	0.1	Standard-free
Ramai	- I I	1	100	50	Medium	1	Standard
RBS	destr	UCTIVE	10	10	Rare	1	Standard-free
ERDA			10	30	Rare	10^{-4}	Standard-free
GIXRD	Surf	10^{6}	100	420	Good	1	Difficult
AXES	Surf	10 ⁵	10-80	420	Rare	1	Standard
Ellipsometry	Surf	10 ³	1	10 ⁻²	Good	0.2-2	Difficult
TEM-EDX	CS	5 Sp	ecimen thickness	30	Good-medium	0.5	Standard
SEM-EDX	CS	150	Few 100	20	Good	0.5	Standard
SEM-WDX	CS	150	Few 100	60	Good	3	Standard
Scanning Auger	CS	10	1	137	Good	3	Standard
TOF-SIMS	CS	100	1	2	Medium	10^{-6}	Standard
Raman mapping	CS	400	100	120	Medium	1	Standard

Abou-Ras D, Caballero R, Fischer C H, Kaufmann C A, Lauermann I, Mainz R, Mönig H, Schöpke A, Stephan C, Streeck C, Schorr S, Eicke A, Döbeli M, Gade B, Hinrichs J, Nunney T, Dijkstra H, Hoffmann V, Klemm D, Efimova V, Bergmaier A, Dollinger G, Wirth T, Unger W, Rockett A A, Perez-Rodriguez A, Alvarez-Garcia J, Izquierdo-Roca V, Schmid T, Choi P P, Müller M, Bertram F, Christen J, Khatri H, Collins R W, Marsillac S and Kötschau I, 2011 Microsc. Microanal. 17 (2011) 728. Combination of grating coupled interferometry with spectroscopic ellipsometry

THE INTERFEROMETER:

E. Agocs, P. Kozma, J. Nador, B. Kalas, A. Hamori, M. Janosov, S. Kurunczi, B. Fodor, M. Fried, R. Horvath, P. Petrik, "In-situ simultaneous monitoring of layer adsorption in aqueous solutions using grating coupled optical waveguide interferometry combined with spectroscopic ellipsometry", Appl. Surf. Sci. 421 (2017) 289.

Methods for thin film characterization

Technique	Analysis Mode	Lateral Resolution (nm)	Depth Resolution (nm)	Duration (min)	Availability	Detection Limits (at.%)	Quantification of Results
SIMS	DP	5×10^{3}	4	45	Good	$10^{-7} - 10^{-3}$	Standard
SNMS	DP	10^{6}	1	120	Medium	0.05	Standard
GD-OES	DP	10^{6}	3-100	5	Good	$10^{-5} - 10^{-3}$	Standard
GD-MS	DP	10^{7}	10	10	Medium	$10^{-7} - 10^{-5}$	Standard
AES	DP	10^{5}	10	45	Good	0.3	Standard
XPS	DP	10^{5}	1-10	120	Good	0.1	Standard-free
Raman depth-profiling	DP				Medium	1	Standard
RBS	Surf		ensitiv	/e	Rare	1	Standard-free
ERDA	Surf				Rare	10^{-4}	Standard-free
GIXRD	Surf	10^{6}	100	420	Good	1	Difficult
AXES	Surf	10^{5}	10-80	420	Rare	1	Standard
Ellipsometry	Surf	10 ³	1	10-2	Good	0.2-2	Difficult
TEM-EDX	CS	5 S	pecimen thicknes	s 30	Good-medium	0.5	Standard
SEM-EDX	CS	150	Few 100	20	Good	0.5	Standard
SEM-WDX	CS	150	Few 100	60	Good	3	Standard
Scanning Auger	CS	10	1	137	Good	3	Standard
TOF-SIMS	CS	100	1	2	Medium	10^{-6}	Standard
Raman mapping	CS	400	100	120	Medium	1	Standard

Abou-Ras D, Caballero R, Fischer C H, Kaufmann C A, Lauermann I, Mainz R, Mönig H, Schöpke A, Stephan C, Streeck C, Schorr S, Eicke A, Döbeli M, Gade B, Hinrichs J, Nunney T, Dijkstra H, Hoffmann V, Klemm D, Efimova V, Bergmaier A, Dollinger G, Wirth T, Unger W, Rockett A A, Perez-Rodriguez A, Alvarez-Garcia J, Izquierdo-Roca V, Schmid T, Choi P P, Müller M, Bertram F, Christen J, Khatri H, Collins R W, Marsillac S and Kötschau I, 2011 Microsc. Microanal. 17 (2011) 728.

Conventional flow cell **Kretschmann-Raether configuration** Combination of methods Tuning of the resonance Mid infrared range **Electrochemical sensing** Combinatory Summary

www.ellipsometry.hu

Decrease size,

To decrease

- the time to mix,
- the amount of material

A new simple tubular flow cell for use with variable angle spectroscopic ellipsometry: A high throughput in situ protein adsorption study

T.M. Byrne^a, S. Trussler^a, M.A. McArthur^a, L.B. Lohstreter^b, Zhijun Bai^c, M.J. Filiaggi^{c,d}, J.R. Dahn^{a,e,*}

^a Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada B3H 3J5

^bMedtronic Corporation, Minneapolis, MN, USA

^cSchool of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada B3H 3J5

^d Department of Applied Oral Sciences, Faculty of Dentistry, Halifax, NS, Canada B3H 3J5

^e Department of Chemistry, Dalhousie University, Halifax, NS, Canada B3H 3J5

Change the angle

J. Nador, B. Kalas, A. Saftics, E. Agocs, P. Kozma, L. Korosi, I. Szekacs, M. Fried, R. Horvath, P. Petrik, Plasmon-enhanced two-channel in situ Kretschmann ellipsometry of protein adsorption, cellular adhesion and polyelectrolyte deposition on titania nanostructures, Opt Express. 24 (2016) 4812–4823.

Moving spot (two-channel capabilities)

J. Nador, B. Kalas, A. Saftics, E. Agocs, P. Kozma, L. Korosi, I. Szekacs, M. Fried, R. Horvath, P. Petrik, Plasmon-enhanced two-channel *in situ* Kretschmann ellipsometry of protein adsorption, cellular adhesion and polyelectrolyte deposition on titania nanostructures, Opt. Express. 24 (2016) 4812.

$\tan \Psi = abs(r_p/r_s)$

tan ψ - measured

Adsorption of flagellar filaments

Combination of grating coupled interferometry with spectroscopic ellipsometry

THE INTERFEROMETER:

E. Agocs, P. Kozma, J. Nador, B. Kalas, A. Hamori, M. Janosov, S. Kurunczi, B. Fodor, M. Fried, R. Horvath, P. Petrik, "In-situ simultaneous monitoring of layer adsorption in aqueous solutions using grating coupled optical waveguide interferometry combined with spectroscopic ellipsometry", Appl. Surf. Sci. 421 (2017) 289.

$\tan \Psi = abs(r_p/r_s)$

tan ψ - measured

Sensitivity maps in d ψ /dn

75

 $\times 10^4$

Sensitivity maps

Penetration depth of light

A. Romanenko, B. Kalas, P. Hermann, O. Hakkel, L. Illés, M. Fried, P. Fürjes, G. Gyulai, P. Petrik, Membrane-Based *In Situ* Mid-Infrared Spectroscopic Ellipsometry: A Study on the Membrane Affinity of Polylactide- *co* -glycolide Nanoparticulate Systems, Anal. Chem. 93 (2021) 981–991.

Silicon on insulator (SOI) membrane cell in mid IR

Issues of mechanical stress

Integration in a commercial mid-IR ellipsometer

Measured and fitted ellipsometry spectra

Differences in Ψ (E) and Δ (F) before and after the adsorption of polymer nanoparticles.

Detection of Ni and As in water

Tóth, Balázs Kakasi, Zoltán Lábadi, András Saftics, Benjamin Kalas, Miklós Fried, Péter Petrik & Ferenc Vonderviszt, "Flagellin-based electrochemical sensing layer for arsenic detection in water", accepted in Scientific Reports (2021).

Cyclic voltammetry

Two-channel Kretschmann ellipsometry

B. Kalas, J. Nador, E. Agocs, A. Saftics, S. Kurunczi, M. Fried, P. Petrik, Protein adsorption monitored by plasmon-enhanced semi-cylindrical Kretschmann ellipsometry, Applied Surface Science. 421 (2017) 585–592

Cyclic voltammetry

Z. Labadi, B. Kalas, A. Saftics, L. Illes, H. Jankovics, É. Bereczk-Tompa, A. Sebestyén, É. Tóth, B. Kakasi, C. Moldovan, B. Firtat, M. Gartner, M. Gheorghe, F. Vonderviszt, M. Fried, P. Petrik, Sensing Layer for Ni Detection in Water Created by Immobilization of Bioengineered Flagellar Nanotubes on Gold Surfaces, ACS Biomater. Sci. Eng. 6 (2020) 3811–3820.

B. Kalas, Z. Zolnai, G. Sáfrán, M. Serényi, E. Agocs, T. Lohner, A. Nemeth, N.Q. Khánh, M. Fried, P. Petrik, Micro-combinatorial sampling of the optical properties of hydrogenated amorphous $Si_{1-x}Ge_x$ for the entire range of compositions towards a database for optoelectronics, Scientific Reports 10 (2020) 19266.

Mapping by spectroscopic ellipsometry

spot size: ~0.2 mm

resolution: ~1%
Dispersion of amorphous SiGe

Parameters of the dispersion model

www.ellipsometry.hu

Ellipsometry @ MTA EK MFA MEA mtak

Staff: P. Petrik, M. Fried, T. Lohner, E. Agocs, B. Kalas, A. Romanenko,

Publications, Projects, Equipment, History, Contact, Cooperations, Staff

Biomaterials and Bioellipsometry

Photonic structures

Bioellipsometry

Nanostructures

Photovoltaics

Modeling

Mapping

Optical properties

Waveguide

characterizations

Books and lectures

Hemicylindrical plasmon-enhanced Kretschmann ellipsometry

<u>Plasmon-enhanced two-channel, multi-angle *in situ* <u>spectroscopic ellipsometry</u></u>

Publications

Projects

Equipment

History

Contact

Cooperations

Staff

<u>Combination of ellipsometry with waveguide</u> <u>interferometry</u>

www.photonics.hu

Home About Contact

Most important

- What is directly measured by ellipsometry
- What sample properties can be determined
- Some typical applications

Metrologies for thin film characterizations

		Lateral	Depth			Detection	
	Analysis	Resolution	Resolution	Duration		Limits	Quantification
Technique	Mode	(nm)	(nm)	(min)	Availability	(at.%)	of Results
SIMS	DP	5×10^{3}	4	45	Good	$10^{-7} - 10^{-3}$	Standard
SNMS	DP	10^{6}	1	120	Medium	0.05	Standard
GD-OES	DP	10^{6}	3-100	5	Good	$10^{-5} - 10^{-3}$	Standard
GD-MS	DP	107	10	10	Medium	$10^{-7} - 10^{-5}$	Standard
AES	DP	10^{5}	10	45	Good	0.3	Standard
XPS	DP	10^{5}	1-10	120	Good	0.1	Standard-free
Raman depth-profiling	DP	10^{5}	100	50	Medium	1	Standard
RBS	Surf	107	10	10	Rare	1	Standard-free
ERDA	Surf	10^{7}	10	30	Rare	10^{-4}	Standard-free
GIXRD	Surf	10^{6}	100	420	Good	1	Difficult
AXES	Surf	10^{5}	10-80	420	Rare	1	Standard
Ellipsometry	Surf	10^{6}	1	30	Medium	0.2-2	Difficult
TEM-EDX	CS	5	Specimen thickness	30	Good-medium	0.5	Standard
SEM-EDX	CS	150	Few 100	20	Good	0.5	Standard
SEM-WDX	CS	150	Few 100	60	Good	3	Standard
Scanning Auger	CS	10	1	137	Good	3	Standard
TOF-SIMS	CS	100	1	2	Medium	10^{-6}	Standard
Raman mapping	CS	400	100	120	Medium	1	Standard

Abou-Ras D, Caballero R, Fischer C H, Kaufmann C A, Lauermann I, Mainz R, Mönig H, Schöpke A, Stephan C, Streeck C, Schorr S, Eicke A, Döbeli M, Gade B, Hinrichs J, Nunney T, Dijkstra H, Hoffmann V, Klemm D, Efimova V, Bergmaier A, Dollinger G, Wirth T, Unger W, Rockett A A, Perez-Rodriguez A, Alvarez-Garcia J, Izquierdo-Roca V, Schmid T, Choi P P, Müller M, Bertram F, Christen J, Khatri H, Collins R W, Marsillac S and Kötschau I 2011 Microsc. Microanal. doi:10.1017/S1431927611000523 1

Dispersion function

Ion implantation

Damage profiles (c-Si), comparative measurements (SE, RBS, TEM)

65 nm 70 nm

Model 1

Example: Ion implantationcaused damage. Determination of Volume fraction the damage profile. A few fit parameters, equal sub-layer Surface distances

Damage profiles (p-Si), comparative measurements (SE, TEM, RBS not!)

Cavities by high-dose helium implantation

Depth (nm)

Implantation of 10 keV He into c-Si with a subsequent annealing

P. Petrik, M. Fried, T. Lohner, O. Polgár, J. Gyulai, F. Cayrel, D. Alquier; Optical models for cavity profiles in high-dose heliumimplanted and annealed silicon measured by ellipsometry, J. Appl. Phys. 97 (2005) 1-6.

Polycrystalline silicon

Modeling #1

Dielectric functions sensitive to crystal structure

What shows the dielectric function

Optical Properties of Solids: Example Indirect Crystalline Si

Optical modeling of polycrystalline silicon and porous silicon

Optical penetration depth in deposited silicon

nc-Si from: G. E. Jellison, M. F. Chisholm, and S. M. Gorbatkin, Appl. Phys. Lett. 62, 348 (1993)

P. Petrik, M. Fried, T. Lohner, R. Berger, L. P. Biro, C. Schneider, J. Gyulai, H. Ryssel, Thin Solid Films 313, 259 (1998)

Center for Photovoltaics Innovation and Commercialization

Department of Physics and Astronomy University of Toledo

.... energizing Ohio for the 21st Century

P. Petrik, L. P.Biró, M. Fried, T. Lohner, R. Berger, C. Schneider, J. Gyulai, H. Ryssel; Comparative study of surface roughness measured on polysilicon using SE and AFM; Thin Solid Films v.315 (1998) 186.

In situ ellipsometry

In-situ, real-time Construction of the heater with active cooling and optics for *in situ* metrology

Temperature dependence of the refractive index of silicon

Comparison of two models (fit in a limited range)

0.4	range)						
e. ≯ - ⊑ og	ing time.	Table 5.2. Fitted model parameters as functions of annealing time					
- E 0.3	Oxide thickness σ		pc-Si	a-Si	Annealing time		
		(%) (%) (nm)		(min)			
0.2	0.003	1.3 ± 0.1	1.8	98.2 ± 1.8	0		
	0.003	1.2 ± 0.1	2.6	97.4 ± 1.7	6		
	0.004	1.4 ± 0.2	3.9	96.1 ± 2.1	13		
-0.6	0.004	1.5 ± 0.2	19.9	80.1 ± 2.3	20		
	0.004	1.8 ± 0.1	45.5	54.5 ± 2.4	26		
os ∆	0.003	1.8 ± 0.1	70.2	29.8 ± 2.4	33		
0 -0.8	0.003	1.7 ± 0.1	87.4	12.6 ± 2.0	39		
	0.002	1.6 ± 0.1	97.6	$2.4{\pm}1.0$	46		
	0.001	1.5 ± 0.1	99.8	0.2 ± 0.2	52		
-1.0	0.001	1.3 ± 0.1	99.9	0.1 ± 0.1	59		
-							

Wavelength (um)

Fit (Model 1):

0.4

0.5

Fit (Model 2):

----- t = 6 min (a=0.003)

Mapping ellipsometry

Integration of spectroscopic ellipsometry in a vertical furnace

Construction of the heater with active cooling and optics for *in situ* metrology

Wide-angle ellipsometer first version: (1) point-like-source (2) light-cone (3) polarizer (4) sample, moving stage (5) analizer (6) screen+CCD-camera

G. Juhasz, Z. Horvath, C. Major, P. Petrik, O. Polgar, M. Fried, "Non-collimated beam ellipsometry," physica status solidi c 5 (2008) 1081-1084.

"Traditional" ellipsometer (1 point)

wide-angle ellipsometer ver.1

(1) Light-source (LED-panel) (2) diffusor (3) film-polarizer(4) analyzer (6) sample (5) detector (pin-hole+CCD-detector)

"Imaging" or microscope ellipsometer

"Macroscope"

•Student Lab, Technical University, Budapest

Application on large surface (ver. 2)

(1) Source, (2) polarizer, (3) spherical mirror, (4) convergent beam, (5) sample,
(6) cylindrical (correction) mirror, (7) corrected beam,
(8) analyzer, (9) pin-hole, (10) beam, (11) CCD

M. Fried, G. Juhász, C. Major, P. Petrik, O. Polgár, Z. Horváth, A. Nutsch, "Expanded beam (macro-imaging) ellipsometry", Thin Solid Films 519 (2011) 2730.

AccuMap MCS-23

thickness map [nm]

Expanded-Beam SE

What is seen on the CCD-matrix? 5/10 mm periodic change (mask) Test of the lateral & spectral resolution

•3 prototypes of expanded beam mapping spectroscopic ellipsometer

Mapping using complex models (a-Si/Al/Glass[subs.])

Thickness-maps of a-Si layers on 30x30 cm² a-Si/Al/glass (left) and a-Si/glass (right) samples by the 30 cm wide expanded beam device and by a commercial ellipsometer. 1 color = 10 nm. Maps by the commercial ellipsometer are merged from 4 independent 15x15 cm² maps (dashed rectangulars).

Schematic view of the cluster integration

M. Fried, G. Juhász, C. Major, P. Petrik, O. Polgár, Z. Horváth, A. Nutsch, "Expanded beam (macro-imaging) ellipsometry", Thin Solid Films 519 (2011) 2730.

•New method for the integration of divergent light source ellipsometry into a cluster chamber

M. Fried, G. Juhász, C. Major, P. Petrik, O. Polgár, Z. Horváth, A. Nutsch, "Expanded beam (macro-imaging) ellipsometry", Thin Solid Films 519 (2011) 2730.

Nanocrystals in porous silicon

POROUS SILICON

Model	Substrate	Interface	Bulk layer	Surface	MSE
12	c-Si		d = 338.1 ± 0.1 nm c-Si + 0.43 ± 0.001 voids		27.3
13	c-Si		d = 340.1 ± 0.6 nm c-Si + 0.44 ± 0.001 voids + 0.17 ± 0.01 nc-Si		16.0
26	c-Si		d = 320.8 ± 0.9 nm c-Si + 0.46 ± 0.001 voids + 0.18 ± 0.004 <mark>nc-S</mark> i	d = 29.6 ± 1.0 nm c-Si + 0.44 ± 0.001 voids + 0.34 ± 0.01 <mark>nc-Si</mark>	11.2
39	c-Si	d = 19.1 ± 0.3 nm c-Si + 0.32 ± 0.02 voids + 2.22 ± 0.23 nc-Si	d = 313.0 ± 1.1 nm c-Si + 0.48 ± 0.001 voids + 0.21 ± 0.01 nc-Si	d = 38.0 ± 0.7 nm c-Si + 0.45 ± 0.001 voids + 0.29 ± 0.01 nc-Si	7.6

Effective Medium Approximation

 $R = 0.003 \ \Omega cm$

Fit of porous silicon using the effective medium method

Imaginary part of dielectric function by Effective Medium Approximation

- decreasing amplitude
- red shift of peaks
- broadening

with increasing nc-Si fraction

Parameterization of the dielectric function

Sensitive parameters can be identified by fitting the MDF model on reference data

F Fit of MDF on nc-Si E'_0 C'_0 40 $\begin{array}{c} \gamma_0'\\ E_1'\\ C_1'\\ \gamma_1' \end{array}$ 35 nc-Si 30 NUL MSI E0p 25 E1 5 20 E1x 15 E1p E2DHO 10 E2-2D 5 0 2 3 4 5 1 Photon Energy (eV)

	c-Si	nc-Si	a-Si	
	3.39 ± 0.03	3.31 ± 0.01	2.85 ± 0.06	
	5.52 ± 0.52	6.30 ± 0.10	7.98 ± 0.34	
	0.60 ± 0.57			
←	0.06 ± 0.02	0.17 ± 0.01	0.33 ± 0.09	
•	4.30 ± 0.01	4.24 ± 0.01	3.91 ± 0.18	
	3.20 ± 0.19	3.19 ± 0.15	2.09 ± 0.98	
←	0.11 ± 0.01	0.19 ± 0.01	0.38 ± 0.05	
•	3.68 ± 0.26	3.89 ± 0.26	0.99 ± 1.38	
	3.33 ± 0.04	3.09 ± 0.04	2.54 ± 0.07	
	0.31 ± 0.49	0.35 ± 0.14	1.32 ± 0.65	
←	0.03 ± 0.02	0.13 ± 0.03	0.28 ± 0.04	
	5.33 ± 0.08			
	0.33 ± 0.14			
	0.11 ± 0.05			
E	0.34	0.32	0.34	

Fitted value for

 E_1 B_1

 B_{1x} γ E_2 C_2 γ_2

P. Basa, P. Petrik, M. Fried, L. Dobos, B. Pécz, L. Tóth, Physica E 38 (2007) 76.

Setup table of parameters to fit

Couple

 \checkmark

Ratio

- To set fitted and	Parname	Lower	Param	Upper	Fit	С	Х
fixed parameters	d1 (nm) .	37.0000	41.0000	41.000	1	0	0.000
1	d2 (nm) 3	18.0000	318.3226	322.000	1	0	0.000
To define coupling	d3 (nm) 2	22.0000	22.9648	26.000	1	0	0.000
- To define coupling	fv1 (%)	0.4200	0.4468	0.460	1	0	0.000
	fv2 (%)	0.4600	0.4932	0.510	1	0	0.000
Multi point	fv3 (%)	0.5500	0.6000	0.600	1	0	0.000
random search.	E_0p (eV)	3.2500	3.3500	3.500	0	0	0.000
random searen.	C_0p	0.0200	0.0700	0.270	0	0	0.000
- MSE of 100000	gm_0p	0.0200	0.0900	0.190	0	0	0.000
random sets	E_1 (eV)	3.3200	3.3612	3.400	1	0	0.000
algulated	A_1	3.7000	3.9833	4.000	1	0	0.000
calculated	A_1x	0.8000	1.1153	1.300	0		0.280
	Gm_1 (eV)	0.0800	0.0970	0.120	1	0	0.000
- Gradient search	E_1p (eV)	5.3300	5.3300	5.330	0	0	0.000
starting from sets of	C_1p	0.3000	0.3000	0.300	0	0	0.000
the 50 best MSEs	gm_1p	0.1200	0.1200	0.120	0	0	0.000
	E_2 (eV)	4.1900	4.2600	4.260	1	0	0.000
Best MSE gradient	A 2	4.2600	4.3379	4.380	1	0	0.000
- Dest-IVISE gradient	C_2	3.5200	3.2534	3.520	0	18	0.750
search result chosen	Gm 2 (eV)	0.0600	0.0871	0.120	1	0	0.000
as final result	gm_2	0.1200	0.1722	0.200	1	0	0.000
	ei	0.0000	0.4371	1.000	1	0	0.000

Solar cell research

Durvított üveg

Roughness = <u>4.51 nm</u> (fit) + Substrate = <u>Cauchy Substrate</u>

Spectroscopic Ellipsometric (SE) Data

Spectroscopic Ellipsometric (SE) Data

Durvított üveg

$$MSE = 1.377$$

- $Roughness = 5.13 \pm 0.029 nm$
- $A = 1.507 \pm 0.0002$
- $B = 0.00975 \pm 0.000164$
- $C = -0.00043 \pm 0.000019$

$$n @ 1.960 eV = 1.528$$

- forgó kompenzátor!
- forgó polarizátorral nem mérhető

	RCE	RAE	RPE
Measure αll Ψ/Λ accurately	Yes	No	No
Measure A handedness	Yes	No	No
Combine with fast CCD detection	Yes	Yes	Yes

Model of amorphous silicon for solar cells

Spectroscopic Data At X=1.73, Y=1.00

Error of the fit

Thickness of the amorphous layer

Gap

-C)

-77

 \overline{O}

6.0x10¹⁴

Bioellipsometry

•Liquid cell

Capacity	0.2 ml
Angle of incidence	75°
Flow rate	Below 0.5 ml/min
Solution amount for 1 hour (at least)	30 ml
Windows diameter	4 mm
Sample size (O-ring)	27x7 mm

S. Kurunczi, A. Nemeth, T. Hulber, P. Kozma, P. Petrik, H. Jankovics, A. Sebestyen, F. Vonderviszt, M. Fried, I. Bársony, "In situ ellipsometric study of surface immobilization of flagellar filaments", Applied Surface Science 257 (2010) 319.

Immobilization in a liquid cell using a SOPRA ES4G ellipsometer

Surface morphology

Applying log-normal lenght distribution (x_m = 285 nm, w = 1.24 nm), 600 particles:

• Applying normal lenght distribution ($x_m = 600 \text{ nm}$, w = 100 nm), 600 particles:

P. Kozma, D. Kozma, A. Nemeth, H. Jankovics, S. Kurunczi, R. Horvath, F. Vonderviszt, M. Fried, P. Petrik, In-depth characterization and computational 3D reconstruction of flagellar filament protein layer structure based on in situ spectroscopic ellipsometry, Applied Surface Science 257 (2011) 7160.

Combination of grating coupled interferometry with spectroscopic ellipsometry

THE INTERFEROMETER:

E. Agocs, P. Kozma, J. Nador, B. Kalas, A. Hamori, M. Janosov, S. Kurunczi, B. Fodor, M. Fried, R. Horvath, P. Petrik, "In-situ simultaneous monitoring of layer adsorption in aqueous solutions using grating coupled optical waveguide interferometry combined with spectroscopic ellipsometry", to be published. Combination of grating coupled interferometry with spectroscopic ellipsometry

Combined GCI-SE test measurements

Polyelectrolite deposition

Another Kretschmann configuration

Measurement with the hemi-spherical Kretschmann setup

DIFFERENCE WITH AND WITHOUT A FIBRINOGEN LAYER

E. Agocs, B. Kalas, P. Kozma, P. Petrik, "Plasmon enhanced adsorption monitoring by multiple angle of incidence spectroscopic ellipsometry in the Kretschmann geometry", to be published.
•Glazed ceramic layers by SE, RBS and in-air PIXE

